在上一课时,我们以 Guava 的 LoadingCache 为例,介绍了堆内缓存的特点以及一些注意事项。同时,还了解了缓存使用的场景,这对分布式缓存来说,同样适用。
那什么叫分布式缓存呢?它其实是一种集中管理的思想。如果我们的服务有多个节点,堆内缓存在每个节点上都会有一份;而分布式缓存,所有的节点,共用一份缓存,既节约了空间,又减少了管理成本。
在分布式缓存领域,使用最多的就是 Redis。Redis 支持非常丰富的数据类型,包括字符串(string)、列表(list)、集合(set)、有序集合(zset)、哈希表(hash)等常用的数据结构。当然,它也支持一些其他的比如位图(bitmap)一类的数据结构。
说到 Redis,就不得不提一下另外一个分布式缓存 Memcached(以下简称 MC)。MC 现在已经很少用了,但面试的时候经常会问到它们之间的区别,这里简单罗列一下:
Redis 在互联网中,几乎是标配。我们接下来,先简单看一下 Redis 在 Spring 中是如何使用的,然后,再介绍一下在秒杀业务中,Redis是如何帮助我们承接瞬时流量的。
使用 SpringBoot 可以很容易地对 Redis 进行操作(完整代码见仓库)。Java 的 Redis的客户端,常用的有三个:jedis、redisson 和 lettuce,Spring 默认使用的是 lettuce。
lettuce 是使用 netty 开发的,操作是异步的,性能比常用的 jedis 要高;redisson 也是异步的,但它对常用的业务操作进行了封装,适合书写有业务含义的代码。
通过加入下面的 jar 包即可方便地使用 Redis。
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
上面这种方式,我们主要是使用 RedisTemplate 这个类。它针对不同的数据类型,抽象了相应的方法组。
另外一种方式,就是使用 Spring 抽象的缓存包 spring-cache。它使用注解,采用 AOP的方式,对 Cache 层进行了抽象,可以在各种堆内缓存框架和分布式框架之间进行切换。这是它的 maven 坐标:
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-cache</artifactId>
</dependency>
与 spring-cache 类似的,还有阿里的 jetcache,都是比较好用的。
使用 spring-cache 有三个步骤:
我们这里使用的是 RedisCacheManager,由于现在只有这一个初始化实例,第二个步骤是可以省略的。
针对缓存操作的注解,有三个:
对于秒杀系统来说,仅仅使用这三个注解是有局限性的,需要使用更加底层的 API,比如 RedisTemplate,来完成逻辑开发,下面就来介绍一些比较重要的功能。
秒杀,是对正常业务流程的考验。因为它会产生突发流量,平常一天的请求,可能就集中在几秒内就要完成。比如,京东的某些抢购,可能库存就几百个,但是瞬时进入的流量可能是几十上百万。
如果参与秒杀的人,等待很长时间,体验就非常差,想象一下拥堵的高速公路收费站,就能理解秒杀者的心情。同时,被秒杀的资源会成为热点,发生并发争抢的后果。比如 12306 的抢票,如果单纯使用数据库来接受这些请求,就会产生严重的锁冲突,这也是秒杀业务难的地方。
大家可以回忆一下上一课时的内容,此时,秒杀前端需求与数据库之间的速度是严重不匹配的,而且秒杀的资源是热点资源。这种场景下,采用缓存是非常合适的。
处理秒杀业务有三个绝招:
下面,我们就来看一下 Redis 是如何助力秒杀的。
一个秒杀系统是非常复杂的,一般来说,秒杀可以分为一下三个阶段:
下面,我将介绍一下最重要的秒杀阶段。
我们可以设计一个 Hash 数据结构,来支持库存的扣减。
seckill:goods:${goodsId}{
total: 100,
start: 0,
alloc:0
}
在这个 Hash 数据结构中,有以下三个重要部分:
static final String goodsId = "seckill:goods:%s";
String getKey(String id) {
return String.format(goodsId, id);
}
public void prepare(String id, int total) {
String key = getKey(id);
Map<String, Integer> goods = new HashMap<>();
goods.put("total", total);
goods.put("start", 0);
goods.put("alloc", 0);
redisTemplate.opsForHash().putAll(key, goods);
}
秒杀的时候,首先需要判断库存,才能够对库存进行锁定。这两步动作并不是原子的,在分布式环境下,多台机器同时对 Redis 进行操作,就会发生同步问题。
为了解决同步问题,一种方式就是使用 Lua 脚本,把这些操作封装起来,这样就能保证原子性;另外一种方式就是使用分布式锁,分布式锁我们将在 13、14 课时介绍。
下面是一个调试好的 Lua 脚本,可以看到一些关键的比较动作,和 HINCRBY 命令,能够成为一个原子操作。
local falseRet = "0"
local n = tonumber(ARGV[1])
local key = KEYS[1]
local goodsInfo = redis.call("HMGET",key,"total","alloc")
local total = tonumber(goodsInfo[1])
local alloc = tonumber(goodsInfo[2])
if not total then
return falseRet
end
if total >= alloc + n then
local ret = redis.call("HINCRBY",key,"alloc",n)
return tostring(ret)
end
return falseRet
对应的秒杀代码如下,由于我们使用的是 String 的序列化方式,所以会把库存的扣减数量先转化为字符串,然后再调用 Lua 脚本。
public int secKill(String id, int number) {
String key = getKey(id);
Object alloc = redisTemplate.execute(script, Arrays.asList(key), String.valueOf(number));
return Integer.valueOf(alloc.toString());
}
执行仓库里的 testSeckill 方法。启动 1000 个线程对 100 个资源进行模拟秒杀,可以看到生成了 100 条记录,同时其他的线程返回的是 0,表示没有秒杀到。
抛开秒杀场景,我们再来看一下分布式缓存系统会存在的三大问题: 缓存穿透、缓存击穿和缓存雪崩 。
第一个比较大的问题就是缓存穿透。这个概念比较好理解,和我们上一课时提到的命中率有关。如果命中率很低,那么压力就会集中在数据库持久层。
假如能找到相关数据,我们就可以把它缓存起来。但问题是,本次请求,在缓存和持久层都没有命中,这种情况就叫缓存的穿透。
举个例子,如上图,在一个登录系统中,有外部攻击,一直尝试使用不存在的用户进行登录,这些用户都是虚拟的,不能有效地被缓存起来,每次都会到数据库中查询一次,最后就会造成服务的性能故障。
解决这个问题有多种方案,我们来简单介绍一下。
第一种就是把空对象缓存起来。不是持久层查不到数据吗?那么我们就可以把本次请求的结果设置为 null,然后放入到缓存中。通过设置合理的过期时间,就可以保证后端数据库的安全。
缓存空对象会占用额外的缓存空间,还会有数据不一致的时间窗口,所以第二种方法就是针对大数据量的、有规律的键值,使用布隆过滤器进行处理。
一条记录存在与不存在,是一个 Bool 值,只需要使用 1 比特就可存储。布隆过滤器就可以把这种是、否操作,压缩到一个数据结构中。比如手机号,用户性别这种数据,就非常适合使用布隆过滤器。
缓存击穿,指的也是用户请求落在数据库上的情况,大多数情况,是由于缓存时间批量过期引起的。
我们一般会对缓存中的数据,设置一个过期时间。如果在某个时刻从数据库获取了大量数据,并设置了同样的过期时间,它们将会在同一时刻失效,造成和缓存的击穿。
对于比较热点的数据,我们就可以设置它不过期;或者在访问的时候,更新它的过期时间;批量入库的缓存项,也尽量分配一个比较平均的过期时间,避免同一时间失效。
雪崩这个词看着可怕,实际情况也确实比较严重。缓存是用来对系统加速的,后端的数据库只是数据的备份,而不是作为高可用的备选方案。
当缓存系统出现故障,流量会瞬间转移到后端的数据库。过不了多久,数据库将会被大流量压垮挂掉,这种级联式的服务故障,可以形象地称为雪崩。
缓存的高可用建设是非常重要的。Redis 提供了主从和 Cluster 的模式,其中 Cluster 模式使用简单,每个分片也能单独做主从,可以保证极高的可用性。
另外,我们对数据库的性能瓶颈有一个大体的评估。如果缓存系统当掉,那么流向数据库的请求,就可以使用限流组件,将请求拦截在外面。
引入缓存组件后,另外一个老大难的问题,就是缓存的一致性。
我们首先来看问题是怎么发生的。对于一个缓存项来说,常用的操作有四个:写入、更新、读取、删除。
由于业务逻辑大多数情况下,是比较复杂的。其中的更新操作,就非常昂贵,比如一个用户的余额,就是通过计算一系列的资产算出来的一个数。如果这些关联的资产,每个地方改动的时候,都去刷新缓存,那代码结构就会非常混乱,以至于无法维护。
我推荐使用触发式的缓存一致性方式,使用懒加载的方式,可以让缓存的同步变得非常简单:
这种操作,除了编程模型简单,有一个明显的好处。我只有在用到这个缓存的时候,才把它加载到缓存系统中。如果每次修改 都创建、更新资源,那缓存系统中就会存在非常多的冷数据。
但这样还是有问题。接下来介绍的场景,也是面试中经常提及的问题。
我们上面提到的缓存删除动作,和数据库的更新动作,明显是不在一个事务里的。如果一个请求删除了缓存,同时有另外一个请求到来,此时发现没有相关的缓存项,就从数据库里加载了一份到缓存系统。接下来,数据库的更新操作也完成了,此时数据库的内容和缓存里的内容,就产生了不一致。
下面这张图,直观地解释了这种不一致的情况,此时,缓存读取 B 操作以及之后的读取操作,都会读到错误的缓存值。
在面试中,只要你把这个问题给点出来,面试官都会跷起大拇指。
可以使用分布式锁来解决这个问题,将缓存操作和数据库删除操作,与其他的缓存读操作,使用锁进行资源隔离即可。一般来说,读操作是不需要加锁的,它会在遇到锁的时候,重试等待,直到超时。
本课时的内容有点多,但是非常重要,如果你参加过大型互联网公司的面试,会发现本课时有很多高频面试点,值得你反复揣摩。
本课时和上一课时,都是围绕着缓存展开的,它们之间有很多知识点也比较相似。对于分布式缓存来说,Redis 是现在使用最广泛的。我们先简单介绍了一下它和 Memcached 的一些区别,介绍了 SpringBoot 项目中 Redis 的使用方式,然后以秒杀场景为主,学习了库存扣减这一个核心功能的 Lua 代码。这段代码主要是把条件判断和扣减命令做成了原子性操作。
Redis 的 API 使用非常简单,速度也很快,但同时它也引入了很多问题。如果不能解决这些异常场景,那么 Redis 的价值就大打折扣,所以我们主要谈到了缓存的穿透、击穿以及雪崩的场景,并着重介绍了一下缓存的一致性和解决的思路。
下一小节,我将介绍一个与缓存非常类似的优化方法——对象的池化,用复用来增加运行效率,我们下节课见。
© 2019 - 2023 Liangliang Lee. Powered by gin and hexo-theme-book.