30 如何正确保存和传输敏感数据?

今天,我们从安全角度来聊聊用户名、密码、身份证等敏感信息,应该怎么保存和传输。同时,你还可以进一步复习加密算法中的散列、对称加密和非对称加密算法,以及 HTTPS 等相关知识。

应该怎样保存用户密码?

最敏感的数据恐怕就是用户的密码了。黑客一旦窃取了用户密码,或许就可以登录进用户的账号,消耗其资产、发布不良信息等;更可怕的是,有些用户至始至终都是使用一套密码,密码一旦泄露,就可以被黑客用来登录全网。

为了防止密码泄露,最重要的原则是不要保存用户密码。你可能会觉得很好笑,不保存用户密码,之后用户登录的时候怎么验证?其实,我指的是不保存原始密码,这样即使拖库也不会泄露用户密码。

我经常会听到大家说,不要明文保存用户密码,应该把密码通过 MD5 加密后保存。这的确是一个正确的方向,但这个说法并不准确。

首先,MD5 其实不是真正的加密算法。所谓加密算法,是可以使用密钥把明文加密为密文,随后还可以使用密钥解密出明文,是双向的。

而 MD5 是散列、哈希算法或者摘要算法。不管多长的数据,使用 MD5 运算后得到的都是固定长度的摘要信息或指纹信息,无法再解密为原始数据。所以,MD5 是单向的。最重要的是,仅仅使用 MD5 对密码进行摘要,并不安全。

比如,使用如下代码在保持用户信息时,对密码进行了 MD5 计算:

UserData userData = new UserData();

userData.setId(1L);

userData.setName(name);

//密码字段使用MD5哈希后保存

userData.setPassword(DigestUtils.md5Hex(password));

return userRepository.save(userData);

通过输出,可以看到密码是 32 位的 MD5:

"password": "325a2cc052914ceeb8c19016c091d2ac"

到某 MD5 破解网站上输入这个 MD5,不到 1 秒就得到了原始密码:

img

其实你可以想一下,虽然 MD5 不可解密,但是我们可以构建一个超大的数据库,把所有 20 位以内的数字和字母组合的密码全部计算一遍 MD5 存进去,需要解密的时候搜索一下 MD5 就可以得到原始值了。这就是字典表。

目前,有些 MD5 解密网站使用的是彩虹表,是一种使用时间空间平衡的技术,即可以使用更大的空间来降低破解时间,也可以使用更长的破解时间来换取更小的空间。

此外,你可能会觉得多次 MD5 比较安全,其实并不是这样。比如,如下代码使用两次 MD5 进行摘要:

userData.setPassword(DigestUtils.md5Hex(DigestUtils.md5Hex( password)));

得到下面的 MD5:

"password": "ebbca84993fe002bac3a54e90d677d09"

也可以破解出密码,并且破解网站还告知我们这是两次 MD5 算法:

img

所以直接保存 MD5 后的密码是不安全的。一些同学可能会说,还需要加盐。是的,但是加盐如果不当,还是非常不安全,比较重要的有两点。

第一,不能在代码中写死盐,且盐需要有一定的长度,比如这样:

userData.setPassword(DigestUtils.md5Hex("salt" + password));

得到了如下 MD5:

"password": "58b1d63ed8492f609993895d6ba6b93a"

对于这样一串 MD5,虽然破解网站上找不到原始密码,但是黑客可以自己注册一个账号,使用一个简单的密码,比如 1:

"password": "55f312f84e7785aa1efa552acbf251db"

然后,再去破解网站试一下这个 MD5,就可以得到原始密码是 salt,也就知道了盐值是 salt:

img

其实,知道盐是什么没什么关系,关键的是我们是在代码里写死了盐,并且盐很短、所有用户都是这个盐。这么做有三个问题:

因为盐太短、太简单了,如果用户原始密码也很简单,那么整个拼起来的密码也很短,这样一般的 MD5 破解网站都可以直接解密这个 MD5,除去盐就知道原始密码了。

相同的盐,意味着使用相同密码的用户 MD5 值是一样的,知道了一个用户的密码就可能知道了多个。

我们也可以使用这个盐来构建一张彩虹表,虽然会花不少代价,但是一旦构建完成,所有人的密码都可以被破解。

所以,最好是每一个密码都有独立的盐,并且盐要长一点,比如超过 20 位。

第二,虽然说每个人的盐最好不同,但我也不建议将一部分用户数据作为盐。比如,使用用户名作为盐:

userData.setPassword(DigestUtils.md5Hex(name + password));

如果世界上所有的系统都是按照这个方案来保存密码,那么 root、admin 这样的用户使用再复杂的密码也总有一天会被破解,因为黑客们完全可以针对这些常用用户名来做彩虹表。所以,盐最好是随机的值,并且是全球唯一的,意味着全球不可能有现成的彩虹表给你用。

正确的做法是,使用全球唯一的、和用户无关的、足够长的随机值作为盐。比如,可以使用 UUID 作为盐,把盐一起保存到数据库中:

userData.setSalt(UUID.randomUUID().toString());

userData.setPassword(DigestUtils.md5Hex(userData.getSalt() + password));

并且每次用户修改密码的时候都重新计算盐,重新保存新的密码。你可能会问,盐保存在数据库中,那被拖库了不是就可以看到了吗?难道不应该加密保存吗?

在我看来,盐没有必要加密保存。盐的作用是,防止通过彩虹表快速实现密码“解密”,如果用户的盐都是唯一的,那么生成一次彩虹表只可能拿到一个用户的密码,这样黑客的动力会小很多。

更好的做法是,不要使用像 MD5 这样快速的摘要算法,而是使用慢一点的算法。比如 Spring Security 已经废弃了 MessageDigestPasswordEncoder,推荐使用 BCryptPasswordEncoder,也就是BCrypt来进行密码哈希。BCrypt 是为保存密码设计的算法,相比 MD5 要慢很多。

写段代码来测试一下 MD5,以及使用不同代价因子的 BCrypt,看看哈希一次密码的耗时。

private static BCryptPasswordEncoder passwordEncoder = new BCryptPasswordEncoder();

@GetMapping("performance")

public void performance() {

    StopWatch stopWatch = new StopWatch();

    String password = "Abcd1234";

    stopWatch.start("MD5");

    //MD5

    DigestUtils.md5Hex(password);

    stopWatch.stop();

    stopWatch.start("BCrypt(10)");

    //代价因子为10的BCrypt

    String hash1 = BCrypt.gensalt(10);

    BCrypt.hashpw(password, hash1);

    System.out.println(hash1);

    stopWatch.stop();

    stopWatch.start("BCrypt(12)");

    //代价因子为12的BCrypt

    String hash2 = BCrypt.gensalt(12);

    BCrypt.hashpw(password, hash2);

    System.out.println(hash2);

    stopWatch.stop();

    stopWatch.start("BCrypt(14)");

    //代价因子为14的BCrypt

    String hash3 = BCrypt.gensalt(14);

    BCrypt.hashpw(password, hash3);

    System.out.println(hash3);

    stopWatch.stop();

    log.info("{}", stopWatch.prettyPrint());

}

可以看到,MD5 只需要 0.8 毫秒,而三次 BCrypt 哈希(代价因子分别设置为 10、12 和 14)耗时分别是 82 毫秒、312 毫秒和 1.2 秒:

img

也就是说,如果制作 8 位密码长度的 MD5 彩虹表需要 5 个月,那么对于 BCrypt 来说,可能就需要几十年,大部分黑客应该都没有这个耐心。

我们写一段代码观察下,BCryptPasswordEncoder 生成的密码哈希的规律:

@GetMapping("better")

public UserData better(@RequestParam(value = "name", defaultValue = "zhuye") String name, @RequestParam(value = "password", defaultValue = "Abcd1234") String password) {

    UserData userData = new UserData();

    userData.setId(1L);

    userData.setName(name);

    //保存哈希后的密码

    userData.setPassword(passwordEncoder.encode(password));

    userRepository.save(userData);

    //判断密码是否匹配

    log.info("match ? {}", passwordEncoder.matches(password, userData.getPassword()));

    return userData;

}

我们可以发现三点规律。

第一,我们调用 encode、matches 方法进行哈希、做密码比对的时候,不需要传入盐。BCrypt 把盐作为了算法的一部分,强制我们遵循安全保存密码的最佳实践。

第二,生成的盐和哈希后的密码拼在了一起:$是字段分隔符,其中第一个$后的 2a 代表算法版本,第二个$后的 10 是代价因子(默认是 10,代表 2 的 10 次方次哈希),第三个$后的 22 个字符是盐,再后面是摘要。所以说,我们不需要使用单独的数据库字段来保存盐。

"password": "$2a$10$wPWdQwfQO2lMxqSIb6iCROXv7lKnQq5XdMO96iCYCj7boK9pk6QPC"

//格式为:$<ver>$<cost>$<salt><digest>

第三,代价因子的值越大,BCrypt 哈希的耗时越久。因此,对于代价因子的值,更建议的实践是,根据用户的忍耐程度和硬件,设置一个尽可能大的值。

最后,我们需要注意的是,虽然黑客已经很难通过彩虹表来破解密码了,但是仍然有可能暴力破解密码,也就是对于同一个用户名使用常见的密码逐一尝试登录。因此,除了做好密码哈希保存的工作外,我们还要建设一套完善的安全防御机制,在感知到暴力破解危害的时候,开启短信验证、图形验证码、账号暂时锁定等防御机制来抵御暴力破解。

应该怎么保存姓名和身份证?

我们把姓名和身份证,叫做二要素。

现在互联网非常发达,很多服务都可以在网上办理,很多网站仅仅依靠二要素来确认你是谁。所以,二要素是比较敏感的数据,如果在数据库中明文保存,那么数据库被攻破后,黑客就可能拿到大量的二要素信息。如果这些二要素被用来申请贷款等,后果不堪设想。

之前我们提到的单向散列算法,显然不适合用来加密保存二要素,因为数据无法解密。这个时候,我们需要选择真正的加密算法。可供选择的算法,包括对称加密和非对称加密算法两类。

对称加密算法,是使用相同的密钥进行加密和解密。使用对称加密算法来加密双方的通信的话,双方需要先约定一个密钥,加密方才能加密,接收方才能解密。如果密钥在发送的时候被窃取,那么加密就是白忙一场。因此,这种加密方式的特点是,加密速度比较快,但是密钥传输分发有泄露风险。

非对称加密算法,或者叫公钥密码算法。公钥密码是由一对密钥对构成的,使用公钥或者说加密密钥来加密,使用私钥或者说解密密钥来解密,公钥可以任意公开,私钥不能公开。使用非对称加密的话,通信双方可以仅分享公钥用于加密,加密后的数据没有私钥无法解密。因此,这种加密方式的特点是,加密速度比较慢,但是解决了密钥的配送分发安全问题。

但是,对于保存敏感信息的场景来说,加密和解密都是我们的服务端程序,不太需要考虑密钥的分发安全性,也就是说使用非对称加密算法没有太大的意义。在这里,我们使用对称加密算法来加密数据。

接下来,我就重点与你说说对称加密算法。对称加密常用的加密算法,有 DES、3DES 和 AES。

虽然,现在仍有许多老项目使用了 DES 算法,但我不推荐使用。在 1999 年的 DES 挑战赛 3 中,DES 密码破解耗时不到一天,而现在 DES 密码破解更快,使用 DES 来加密数据非常不安全。因此,在业务代码中要避免使用 DES 加密。

而 3DES 算法,是使用不同的密钥进行三次 DES 串联调用,虽然解决了 DES 不够安全的问题,但是比 AES 慢,也不太推荐。

AES 是当前公认的比较安全,兼顾性能的对称加密算法。不过严格来说,AES 并不是实际的算法名称,而是算法标准。2000 年,NIST 选拔出 Rijndael 算法作为 AES 的标准。

AES 有一个重要的特点就是分组加密体制,一次只能处理 128 位的明文,然后生成 128 位的密文。如果要加密很长的明文,那么就需要迭代处理,而迭代方式就叫做模式。网上很多使用 AES 来加密的代码,使用的是最简单的 ECB 模式(也叫电子密码本模式),其基本结构如下:

img

可以看到,这种结构有两个风险:明文和密文是一一对应的,如果明文中有重复的分组,那么密文中可以观察到重复,掌握密文的规律;因为每一个分组是独立加密和解密的 ,如果密文分组的顺序,也可以反过来操纵明文,那么就可以实现不解密密文的情况下,来修改明文。

我们写一段代码来测试下。在下面的代码中,我们使用 ECB 模式测试:

加密一段包含 16 个字符的字符串,得到密文 A;然后把这段字符串复制一份成为一个 32 个字符的字符串,再进行加密得到密文 B。我们验证下密文 B 是不是重复了一遍的密文 A。

模拟银行转账的场景,假设整个数据由发送方账号、接收方账号、金额三个字段构成。我们尝试改变密文中数据的顺序来操纵明文。

private static final String KEY = "secretkey1234567"; //密钥

//测试ECB模式

@GetMapping("ecb")

public void ecb() throws Exception {

  Cipher cipher = Cipher.getInstance("AES/ECB/NoPadding");

  test(cipher, null);

}

//获取加密秘钥帮助方法

private static SecretKeySpec setKey(String secret) {

    return new SecretKeySpec(secret.getBytes(), "AES");

}

//测试逻辑

private static void test(Cipher cipher, AlgorithmParameterSpec parameterSpec) throws Exception {

    //初始化Cipher

    cipher.init(Cipher.ENCRYPT_MODE, setKey(KEY), parameterSpec);

    //加密测试文本

    System.out.println("一次:" + Hex.encodeHexString(cipher.doFinal("abcdefghijklmnop".getBytes())));

    //加密重复一次的测试文本

    System.out.println("两次:" + Hex.encodeHexString(cipher.doFinal("abcdefghijklmnopabcdefghijklmnop".getBytes())));

    //下面测试是否可以通过操纵密文来操纵明文    

    //发送方账号

    byte[] sender = "1000000000012345".getBytes();

    //接收方账号

    byte[] receiver = "1000000000034567".getBytes();

    //转账金额

    byte[] money = "0000000010000000".getBytes();

    //加密发送方账号

    System.out.println("发送方账号:" + Hex.encodeHexString(cipher.doFinal(sender)));

    //加密接收方账号

    System.out.println("接收方账号:" + Hex.encodeHexString(cipher.doFinal(receiver)));

    //加密金额

    System.out.println("金额:" + Hex.encodeHexString(cipher.doFinal(money)));

    //加密完整的转账信息

    byte[] result = cipher.doFinal(ByteUtils.concatAll(sender, receiver, money));

    System.out.println("完整数据:" + Hex.encodeHexString(result));

    //用于操纵密文的临时字节数组

    byte[] hack = new byte[result.length];

    //把密文前两段交换

    System.arraycopy(result, 16, hack, 0, 16);

    System.arraycopy(result, 0, hack, 16, 16);

    System.arraycopy(result, 32, hack, 32, 16);

    cipher.init(Cipher.DECRYPT_MODE, setKey(KEY), parameterSpec);

    //尝试解密

    System.out.println("原始明文:" + new String(ByteUtils.concatAll(sender, receiver, money)));

    System.out.println("操纵密文:" + new String(cipher.doFinal(hack)));

}

输出如下:

img

可以看到:

两个相同明文分组产生的密文,就是两个相同的密文分组叠在一起。

在不知道密钥的情况下,我们操纵密文实现了对明文数据的修改,对调了发送方账号和接收方账号。

所以说,ECB 模式虽然简单,但是不安全,不推荐使用。我们再看一下另一种常用的加密模式,CBC 模式。

CBC 模式,在解密或解密之前引入了 XOR 运算,第一个分组使用外部提供的初始化向量 IV,从第二个分组开始使用前一个分组的数据,这样即使明文是一样的,加密后的密文也是不同的,并且分组的顺序不能任意调换。这就解决了 ECB 模式的缺陷:

img

我们把之前的代码修改为 CBC 模式,再次进行测试:

 private static final String initVector = "abcdefghijklmnop"; //初始化向量

@GetMapping("cbc")

public void cbc() throws Exception {

    Cipher cipher = Cipher.getInstance("AES/CBC/NoPadding");

    IvParameterSpec iv = new IvParameterSpec(initVector.getBytes("UTF-8"));

    test(cipher, iv);

}

可以看到,相同的明文字符串复制一遍得到的密文并不是重复两个密文分组,并且调换密文分组的顺序无法操纵明文:

img

其实,除了 ECB 模式和 CBC 模式外,AES 算法还有 CFB、OFB、CTR 模式,你可以参考这里了解它们的区别。《实用密码学》一书比较推荐的是 CBC 和 CTR 模式。还需要注意的是,ECB 和 CBC 模式还需要设置合适的填充模式,才能处理超过一个分组的数据。

对于敏感数据保存,除了选择 AES+ 合适模式进行加密外,我还推荐以下几个实践:

不要在代码中写死一个固定的密钥和初始化向量,最好和之前提到的盐一样,是唯一、独立并且每次都变化的。

推荐使用独立的加密服务来管控密钥、做加密操作,千万不要把密钥和密文存在一个数据库,加密服务需要设置非常高的管控标准。

数据库中不能保存明文的敏感信息,但可以保存脱敏的信息。普通查询的时候,直接查脱敏信息即可。

接下来,我们按照这个策略完成相关代码实现。

第一步,对于用户姓名和身份证,我们分别保存三个信息,脱敏后的明文、密文和加密 ID。加密服务加密后返回密文和加密 ID,随后使用加密 ID 来请求加密服务进行解密:

@Data

@Entity

public class UserData {

    @Id

    private Long id;

    private String idcard;//脱敏的身份证

    private Long idcardCipherId;//身份证加密ID

    private String idcardCipherText;//身份证密文

    private String name;//脱敏的姓名

    private Long nameCipherId;//姓名加密ID

    private String nameCipherText;//姓名密文

}

第二步,加密服务数据表保存加密 ID、初始化向量和密钥。加密服务表中没有密文,实现了密文和密钥分离保存:

@Data

@Entity

public class CipherData {

    @Id

    @GeneratedValue(strategy = AUTO)

    private Long id;

    private String iv;//初始化向量

    private String secureKey;//密钥

}

第三步,加密服务使用 GCM 模式( Galois/Counter Mode)的 AES-256 对称加密算法,也就是 AES-256-GCM。

这是一种AEAD(Authenticated Encryption with Associated Data)认证加密算法,除了能实现普通加密算法提供的保密性之外,还能实现可认证性和密文完整性,是目前最推荐的 AES 模式。

使用类似 GCM 的 AEAD 算法进行加解密,除了需要提供初始化向量和密钥之外,还可以提供一个 AAD(附加认证数据,additional authenticated data),用于验证未包含在明文中的附加信息,解密时不使用加密时的 AAD 将解密失败。其实,GCM 模式的内部使用的就是 CTR 模式,只不过还使用了 GMAC 签名算法,对密文进行签名实现完整性校验。

接下来,我们实现基于 AES-256-GCM 的加密服务,包含下面的主要逻辑:

加密时允许外部传入一个 AAD 用于认证,加密服务每次都会使用新生成的随机值作为密钥和初始化向量。

在加密后,加密服务密钥和初始化向量保存到数据库中,返回加密 ID 作为本次加密的标识。

应用解密时,需要提供加密 ID、密文和加密时的 AAD 来解密。加密服务使用加密 ID,从数据库查询出密钥和初始化向量。

这段逻辑的实现代码比较长,我加了详细注释方便你仔细阅读:

@Service

public class CipherService {

    //密钥长度

    public static final int AES_KEY_SIZE = 256;

    //初始化向量长度

    public static final int GCM_IV_LENGTH = 12;

    //GCM身份认证Tag长度

    public static final int GCM_TAG_LENGTH = 16;

    @Autowired

    private CipherRepository cipherRepository;

    //内部加密方法

    public static byte[] doEncrypt(byte[] plaintext, SecretKey key, byte[] iv, byte[] aad) throws Exception {

        //加密算法

        Cipher cipher = Cipher.getInstance("AES/GCM/NoPadding");

        //Key规范

        SecretKeySpec keySpec = new SecretKeySpec(key.getEncoded(), "AES");

        //GCM参数规范

        GCMParameterSpec gcmParameterSpec = new GCMParameterSpec(GCM_TAG_LENGTH * 8, iv);

        //加密模式

        cipher.init(Cipher.ENCRYPT_MODE, keySpec, gcmParameterSpec);

        //设置aad

        if (aad != null)

            cipher.updateAAD(aad);

        //加密

        byte[] cipherText = cipher.doFinal(plaintext);

        return cipherText;

    }

    //内部解密方法

    public static String doDecrypt(byte[] cipherText, SecretKey key, byte[] iv, byte[] aad) throws Exception {

        //加密算法

        Cipher cipher = Cipher.getInstance("AES/GCM/NoPadding");

        //Key规范

        SecretKeySpec keySpec = new SecretKeySpec(key.getEncoded(), "AES");

        //GCM参数规范

        GCMParameterSpec gcmParameterSpec = new GCMParameterSpec(GCM_TAG_LENGTH * 8, iv);

        //解密模式

        cipher.init(Cipher.DECRYPT_MODE, keySpec, gcmParameterSpec);

        //设置aad

        if (aad != null)

            cipher.updateAAD(aad);

        //解密

        byte[] decryptedText = cipher.doFinal(cipherText);

        return new String(decryptedText);

    }

    //加密入口

    public CipherResult encrypt(String data, String aad) throws Exception {

        //加密结果

        CipherResult encryptResult = new CipherResult();

        //密钥生成器

        KeyGenerator keyGenerator = KeyGenerator.getInstance("AES");

        //生成密钥

        keyGenerator.init(AES_KEY_SIZE);

        SecretKey key = keyGenerator.generateKey();

        //IV数据

        byte[] iv = new byte[GCM_IV_LENGTH];

        //随机生成IV

        SecureRandom random = new SecureRandom();

        random.nextBytes(iv);

        //处理aad

        byte[] aaddata = null;

        if (!StringUtils.isEmpty(aad))

            aaddata = aad.getBytes();

        //获得密文

        encryptResult.setCipherText(Base64.getEncoder().encodeToString(doEncrypt(data.getBytes(), key, iv, aaddata)));

        //加密上下文数据

        CipherData cipherData = new CipherData();

        //保存IV

        cipherData.setIv(Base64.getEncoder().encodeToString(iv));

        //保存密钥

        cipherData.setSecureKey(Base64.getEncoder().encodeToString(key.getEncoded()));

        cipherRepository.save(cipherData);

        //返回本地加密ID

        encryptResult.setId(cipherData.getId());

        return encryptResult;

    }

    //解密入口

    public String decrypt(long cipherId, String cipherText, String aad) throws Exception {

        //使用加密ID找到加密上下文数据

        CipherData cipherData = cipherRepository.findById(cipherId).orElseThrow(() -> new IllegalArgumentException("invlaid cipherId"));

        //加载密钥

        byte[] decodedKey = Base64.getDecoder().decode(cipherData.getSecureKey());

        //初始化密钥

        SecretKey originalKey = new SecretKeySpec(decodedKey, 0, decodedKey.length, "AES");

        //加载IV

        byte[] decodedIv = Base64.getDecoder().decode(cipherData.getIv());

        //处理aad

        byte[] aaddata = null;

        if (!StringUtils.isEmpty(aad))

            aaddata = aad.getBytes();

        //解密

        return doDecrypt(Base64.getDecoder().decode(cipherText.getBytes()), originalKey, decodedIv, aaddata);

    }

}

第四步,分别实现加密和解密接口用于测试。

我们可以让用户选择,如果需要保护二要素的话,就自己输入一个查询密码作为 AAD。系统需要读取用户敏感信息的时候,还需要用户提供这个密码,否则无法解密。这样一来,即使黑客拿到了用户数据库的密文、加密服务的密钥和 IV,也会因为缺少 AAD 无法解密:

@Autowired

private CipherService cipherService;



//加密

@GetMapping("right")

public UserData right(@RequestParam(value = "name", defaultValue = "朱晔") String name,

                      @RequestParam(value = "idcard", defaultValue = "300000000000001234") String idCard,

                      @RequestParam(value = "aad", required = false)String aad) throws Exception {

    UserData userData = new UserData();

    userData.setId(1L);

    //脱敏姓名

    userData.setName(chineseName(name));

    //脱敏身份证

    userData.setIdcard(idCard(idCard));

    //加密姓名

    CipherResult cipherResultName = cipherService.encrypt(name,aad);

    userData.setNameCipherId(cipherResultName.getId());

    userData.setNameCipherText(cipherResultName.getCipherText());

    //加密身份证

    CipherResult cipherResultIdCard = cipherService.encrypt(idCard,aad);

    userData.setIdcardCipherId(cipherResultIdCard.getId());

    userData.setIdcardCipherText(cipherResultIdCard.getCipherText());

    return userRepository.save(userData);

}

//解密

@GetMapping("read")

public void read(@RequestParam(value = "aad", required = false)String aad) throws Exception {

    //查询用户信息

    UserData userData = userRepository.findById(1L).get();

    //使用AAD来解密姓名和身份证

    log.info("name : {} idcard : {}",

            cipherService.decrypt(userData.getNameCipherId(), userData.getNameCipherText(),aad),

            cipherService.decrypt(userData.getIdcardCipherId(), userData.getIdcardCipherText(),aad));

}

//脱敏身份证

private static String idCard(String idCard) {

    String num = StringUtils.right(idCard, 4);

    return StringUtils.leftPad(num, StringUtils.length(idCard), "*");

}

//脱敏姓名

public static String chineseName(String chineseName) {

    String name = StringUtils.left(chineseName, 1);

    return StringUtils.rightPad(name, StringUtils.length(chineseName), "*");

访问加密接口获得如下结果,可以看到数据库表中只有脱敏数据和密文:

{"id":1,"name":"朱*","idcard":"**************1234","idcardCipherId":26346,"idcardCipherText":"t/wIh1XTj00wJP1Lt3aGzSvn9GcqQWEwthN58KKU4KZ4Tw==","nameCipherId":26347,"nameCipherText":"+gHrk1mWmveBMVUo+CYon8Zjj9QAtw=="}

访问解密接口,可以看到解密成功了:

[21:46:00.079] [http-nio-45678-exec-6] [INFO ] [o.g.t.c.s.s.StoreIdCardController:102 ] - name : 朱晔 idcard : 300000000000001234

如果 AAD 输入不对,会得到如下异常:

javax.crypto.AEADBadTagException: Tag mismatch!

  at com.sun.crypto.provider.GaloisCounterMode.decryptFinal(GaloisCounterMode.java:578)

  at com.sun.crypto.provider.CipherCore.finalNoPadding(CipherCore.java:1116)

  at com.sun.crypto.provider.CipherCore.fillOutputBuffer(CipherCore.java:1053)

  at com.sun.crypto.provider.CipherCore.doFinal(CipherCore.java:853)

  at com.sun.crypto.provider.AESCipher.engineDoFinal(AESCipher.java:446)

  at javax.crypto.Cipher.doFinal(Cipher.java:2164)

经过这样的设计,二要素就比较安全了。黑客要查询用户二要素的话,需要同时拿到密文、IV+ 密钥、AAD。而这三者可能由三方掌管,要全部拿到比较困难。

用一张图说清楚 HTTPS

我们知道,HTTP 协议传输数据使用的是明文。那在传输敏感信息的场景下,如果客户端和服务端中间有一个黑客作为中间人拦截请求,就可以窃听到这些数据,还可以修改客户端传过来的数据。这就是很大的安全隐患。

为解决这个安全隐患,有了 HTTPS 协议。HTTPS=SSL/TLS+HTTP,通过使用一系列加密算法来确保信息安全传输,以实现数据传输的机密性、完整性和权威性。

机密性:使用非对称加密来加密密钥,然后使用密钥来加密数据,既安全又解决了非对称加密大量数据慢的问题。你可以做一个实验来测试两者的差距。

完整性:使用散列算法对信息进行摘要,确保信息完整无法被中间人篡改。

权威性:使用数字证书,来确保我们是在和合法的服务端通信。

可以看出,理解 HTTPS 的流程,将有助于我们理解各种加密算法的区别,以及证书的意义。此外,SSL/TLS 还是混合加密系统的一个典范,如果你需要自己开发应用层数据加密系统,也可以参考它的流程。

那么,我们就来看看 HTTPS TLS 1.2 连接(RSA 握手)的整个过程吧。

img

作为准备工作,网站管理员需要申请并安装 CA 证书到服务端。CA 证书中包含非对称加密的公钥、网站域名等信息,密钥是服务端自己保存的,不会在任何地方公开。

建立 HTTPS 连接的过程,首先是 TCP 握手,然后是 TLS 握手的一系列工作,包括:

客户端告知服务端自己支持的密码套件(比如 TLS_RSA_WITH_AES_256_GCM_SHA384,其中 RSA 是密钥交换的方式,AES_256_GCM 是加密算法,SHA384 是消息验证摘要算法),提供客户端随机数。

服务端应答选择的密码套件,提供服务端随机数。

服务端发送 CA 证书给客户端,客户端验证 CA 证书(后面详细说明)。

客户端生成 PreMasterKey,并使用非对称加密 + 公钥加密 PreMasterKey。

客户端把加密后的 PreMasterKey 传给服务端。

服务端使用非对称加密 + 私钥解密得到 PreMasterKey,并使用 PreMasterKey+ 两个随机数,生成 MasterKey。

客户端也使用 PreMasterKey+ 两个随机数生成 MasterKey。

客户端告知服务端之后将进行加密传输。

客户端使用 MasterKey 配合对称加密算法,进行对称加密测试。

服务端也使用 MasterKey 配合对称加密算法,进行对称加密测试。

接下来,客户端和服务端的所有通信都是加密通信,并且数据通过签名确保无法篡改。你可能会问,客户端怎么验证 CA 证书呢?

其实,CA 证书是一个证书链,你可以看一下上图的左边部分:

从服务端拿到的 CA 证书是用户证书,我们需要通过证书中的签发人信息找到上级中间证书,再网上找到根证书。

根证书只有为数不多的权威机构才能生成,一般预置在 OS 中,根本无法伪造。

找到根证书后,提取其公钥来验证中间证书的签名,判断其权威性。

最后再拿到中间证书的公钥,验证用户证书的签名。

这,就验证了用户证书的合法性,然后再校验其有效期、域名等信息进一步验证有效性。

总结一下,TLS 通过巧妙的流程和算法搭配解决了传输安全问题:使用对称加密加密数据,使用非对称加密算法确保密钥无法被中间人解密;使用 CA 证书链认证,确保中间人无法伪造自己的证书和公钥。

如果网站涉及敏感数据的传输,必须使用 HTTPS 协议。作为用户,如果你看到网站不是 HTTPS 的或者看到无效证书警告,也不应该继续使用这个网站,以免敏感信息被泄露。

重点回顾

今天,我们一起学习了如何保存和传输敏感数据。我来带你回顾一下重点内容。

对于数据保存,你需要记住两点:

用户密码不能加密保存,更不能明文保存,需要使用全球唯一的、具有一定长度的、随机的盐,配合单向散列算法保存。使用 BCrypt 算法,是一个比较好的实践。

诸如姓名和身份证这种需要可逆解密查询的敏感信息,需要使用对称加密算法保存。我的建议是,把脱敏数据和密文保存在业务数据库,独立使用加密服务来做数据加解密;对称加密需要用到的密钥和初始化向量,可以和业务数据库分开保存。

对于数据传输,则务必通过 SSL/TLS 进行传输。对于用于客户端到服务端传输数据的 HTTP,我们需要使用基于 SSL/TLS 的 HTTPS。对于一些走 TCP 的 RPC 服务,同样可以使用 SSL/TLS 来确保传输安全。

最后,我要提醒你的是,如果不确定应该如何实现加解密方案或流程,可以咨询公司内部的安全专家,或是参考业界各大云厂商的方案,切勿自己想当然地去设计流程,甚至创造加密算法。

今天用到的代码,我都放在了 GitHub 上,你可以点击这个链接查看。

思考与讨论

虽然我们把用户名和密码脱敏加密保存在数据库中,但日志中可能还存在明文的敏感数据。你有什么思路在框架或中间件层面,对日志进行脱敏吗?

你知道 HTTPS 双向认证的目的是什么吗?流程上又有什么区别呢?

关于各种加密算法,你还遇到过什么坑吗?你又是如何保存敏感数据的呢?我是朱晔,欢迎在评论区与我留言分享你的想法,也欢迎你把今天的内容分享给你的朋友或同事,一起交流。